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Tutoring Techniques in Algebra

David McArthur, Cathleen Stasz, and Mary Zmuidzinas
The RAND Corporation

Although one-to-one tutoring has been regarded as the most effective method
of teaching (Bloom, 1984), surprisingly little is understood about tutoring ex-
pertise. Much educational research focuses on classroom teaching, whereas
the few studies that focus on one-to-one tutoring do not offer a precise infor-
mation-processing account of this skill. This article describes our initial at-
tempts to study one-to-one tutoring. The goal of our research is to construct
a detailed cognitive model of the reasoning and knowledge of an expert hu-
man tutor. The method we have employed is a variant of knowledge engineer-
ing. We videotaped tutoring sessions with expert teachers, subjecting them to
a detailed analysis aimed at abstracting the tutor's knowledge structures. In
this article, we describe some important tutoring techniques we have izolated
using these methods. We discuss several dimensiors along which tutors ap-
pear to be intelligent planners and problem solver). Finally, we note several
implications of our research, including its potential impact on the construc-
tion of intelligent computer-based tutoring systems.

The search for effective teaching techniques has had a long history in edu-
cation. A vast body of educational research has focused on the question:
What teacher behaviors relate to student outcomes? Much of this research
examines the classroom and the relationship between teacher's classroom
behavior and students' learning as a whole (e.g., Brophy & Good, 1986).
Although classroom teachers must often adjust their instruction to the
ne...ds and skills of individual students, relatively little research has exam-
ined individualized instruction or one-to-one tutoring (e.g., Collins &
Stevens, 1982). We lack a basic theoretical understanding of tutoring, de-
spite the fact that research comparing one-to-one human tutoring with
other techniques consistently finds tutoring to be the standard against
which to measure all other methods (Bloom, 1984; Cohen, J. Kulik, & C.

Reprinted from Cognition and Instruction, Vol. 7, No. 3, pp. 197-244, 1990, C 1990
Lawrence Erlbaum Associates. Reprinted by permission.
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C. Kulik, 1982). Similarly, meta-analyses of studies examining the effective-
ness of individual tutoring, in the context of computer-aided instruction,
generally indicate that computer tutors aid learning (Bangert-Drowns, J. A.
Ku lik, & C. C. Kuiik, 1985; J. A. Kulik, C. C. Ku lik, & Bangert-Drowns,
1985).

Recent advances in cognitive science and artificial intelligence have en-
abled the development of a variety of intelligent tutoring systems (e.g., An-
derson, Boyle, & Reiser, 1985; Brown, Burton, & DeKleer, 1982; Clancey,
1979, 1983b). This work has sparked new interest in one-to-one tutoring as
an effective instructional strategy. To date, however, these efforts have been
most successful at developing methods for student diagnosis (to model the
student's knowledge of the subject matter) and representing subject-matter
knowledge. The pedagogical rules embodied in many computer tutors,

hich encode knowledge of one-to-one tutoring expertise, are often ad hoc
and, with few exceptions, only loosely linked to theories of teaching or
learning. In a recent review of intelligent tutoring systems, Ohlsson (1986)
concluded that research on teaching strategies is central to the construction
of such tutors, yet little has been done at the level of analysis that would in-
form their development.

As developers of an intelligent tutor for basic algebra (McArthur &
Stasz, 1989; McArthur, Stasz, & Hotta, 1987), we began research into the
cognitive skills involved in one-to-one tutoring to inform the design of our
system. Our goal is to develop a detailed information-processing model of
the skills and heuristics used by expert human algebra tutors to guide stu-
dents through a one-to-one tutoring session. Our computer-based algebra
tutor successfully incorporates knowledge of algebra and of student mis-
conceptions into its program, but we have constantly found ourselves
forced to implement tutorial decisions with little justification, for example:
Should students be interrupted after every error? Which errors should be
corrected and which should be mentioned but not fixed for the student?
When should students be given hints or coached? How detailed should
hints be? In order to implement such decisions on an informed basis, much
more must be learned about the cognitive skills that expert human tutors
possess. St_ecifically, if we wish to automate tutoring expertise in intelligent
computer systems, we require a description of the specific cognitive pro-
esses and structures involved in making tutorial decisions. The research re-
ported here represents a first step toward understanding how expert tutors
promote effective learning in the domain of algebra.

In the next section, we review the current literature on the cognitive skills
of tutoring. Subsequent sections describe initial findings from our own re-
search. In the final sections, we discuss implications of our findings, com-
parisons with other research, and our directions for future research.
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RESEARCH ON TUTORING

What constitutes effective tutoring? Our review of research on human and
computer-based tutoring reveals some important research that is beginning
to answer this question. Howevr.r, the work that has been done does not
constitute a comprehensive theory, but rather investigates specific aspects
of the tutoring process.

Research on Human Tutoring

Various studies of human tutoring attempt to decompose the tutoring pro-
cess into elements that are expected to relate to student learning. These in-
clude the frequency (Colker, 1982) and detail (Putnam, 1985, 1987) of
teacher's thoughts about the student and the techniques the tutor uses to fa-
cilitate learning (Collins & Stevens, 1983; Putnam, 1987) or motivation
(Lepper & Chabay, 1985).

Research on tutor's thoughts has examined the extent to which an expert
tutor thinks about the student, as opposed to other concerns, such as in-
structional objectives or subject-matter content. Classroom research (Col-
ker, 1982; Connors, 1978; Mar land, 1977; Marx & Peterson, 1981; McNair,
1978; Semmel, 1977) indicates that teachers' thoughts about their students
account for the largest percentage of reported thoughts (39010 to 50% in
five studies). Furthermore, Colker (1982) found that the frequency with
which teachers focused on the cognitive states of their students was not re-
lated to group size, even though groups ranged from I to 12 students.

However, the level of detail that teachers seek when trying to understand
the cognitive state of their students remains unclear. Putnam (1985, 1987),
for example, found that tutors rarely determine the exact nature or extent
of their student's errors. Tutors ask questions or allow the student to con-
tinue working incorrectly to reveal more about their knowledge, but this
occurs infrequentlyfollowing only 7% of student errors. Rather, their ap-
proach was to get the student to understand how to solve the problem cor-
rectlyto determine the student's missing skills, then teach them. This
approach is in direct contrast to the diagnostic/remedial model implicit in
much research on diagnosis (Ash lock, 1982; Brown & Burton, 1978). This
model suggests that the teacher tries to determine the underlying cause of
the student's error and then to remediate it by correcting the student's
faulty understanding.

Collins and Stevens (1983) developed a taxonomy of strategies that
teachers may use not only to correct misunderstandings, but also to teach
concepts. These strategies include generating hypothetical cases to extend
student reasoning, considering an alternative prediction, and entrapping
students in their misconceptions. According to Collins and Stevens' theory,
teachers choose strategies to pursue a particular teaching goal and maintain
an agenda that allows them to allocate their time efficiently among various
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goals. Which strategies promote which changes in students' cognitive un-
derstanding, however, remains unknown.

Lepper and Chabay (1985, 1988) studied motivational aspects of human
tutoring in addition to cognitive ones. They noted that, whereas tutors usu-
ally agree on motivational goals, they often differ in how they accomplish
these goals. Their research classifies tutoring decisions along four dimen-
sions: control (Who should initiate tutoring interventions, the student or
tutor?), timing (When does a tutor intervene?), content (What should the
tutor say when intervening), and style (How should the tutor say things?).
In studying human tutors, they catalogued many ways in which tutors em-
pathize with students and have also speculated on how computers can be
more empathetic tutors. With good reason, they believed that motivational
considerations may often be as important as cognitive ones in determining
the success of tutoring.

Research on Intelligent Tutoring Systems

Another view of tutoring can be found in the work to develop intelligent
computer tutors (e.g., Anderson & Skwarecki, 1986; Brown & Burton.
1987; Clancey, I 983b). These systems, as well as our own, aim to adapt in-
structional content and form to the cognitive needs of the student on a
moment-by-moment basis. In a recent review of intelligent tutoring systems,
Ohlsson (1986) argued that four principles guide the construction of tutors
with this purpose: cognitive .diagnosis, subject-matter analysis, teaching
tactics, and teaching strategies. Of these four, teaching tactics and strategies
are the least well-developed components of most intelligent tutors.

According to Ohlsson (1986), even state-of-the-art tutoring systems have
a number of shortcomings. Anderson's geometry tutor (Anderson, Boy ler,
& Reiser, 1985), for example, operates by comparing the student's problem-
solving steps to a large knowledge base consisting of both correct and incor-
rect problem-solving rules. The tutor intervenes when the student applies an
incorrect rulethat is, makes useless or illegal moves in the space of possi-
ble inferences. This intelligent monitoring of student activity is very fine
grained (at selection or application of a theorem) and thereby provides mo-
ment-by-moment flexibility and adaptability. The tutor responds to each
action of the learner by mapping his or her action onto a set of problem-
solving rules and then retrieving the appropriate tutorial action connected
with that rule. However, because each incorrect rule is paired with a particu-
lar tutorial action (typically a stored message), every student who takes a
given incorrect step gets the same message, regardless of how many times
the same error has been made or how many other errors have been made.
Thus, at the level of the single tutorial action, "there is no adaptation to the
current cognitive state of the learner other than the classification of his last
step as an instance of a particular type of error" (Ohlsson, 1986, p. 318).

Anderson's tutor is tactical, driven by local student errors, whereas sev-
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eral other tutoring systems appear to offer more strategic rules for tutoring.
For example, Clancey's GUIDON system provides tutoring principles that
deal with global aspects of tutoring (e.g., "examine the student's under-
standing and introduce new information whenever there is an opportunity
to do so"; Clancey, I983b, p. 13). However, as GUIDON now stands, it ap-
pears the behavior of its general principles cannot be modified to suit the
needs of individual students. Thus, GUIDON and other tutors that embed
strategic principles for tutoring may not be inherently more adaptable than
Anderson's tutor or others using just local tutoring rules. In Ohlsson's
words, "each student gets a unique lesson by drawing out a unique se-
quence of locally determined responses from the tutor" (Ohlsson, 1986,
p. 319). The literature on effective tutoring indicates, at least, that tutoring
is more than either global plans or a circumscribed response at a single mo-
ment in time. Neither notion alone helps us understand how a teaching goal
(e.g., explain the distributive rule) becomes translated into a sequence of
teaching techniques to satisfy that goal.

Overall, research on human tutoring is of limited value in developing a
cognitive model of tutoring skills, because it often fails to offer a precise
description of the tutor's mental processes and expertise. On the other
hand, intelligent tutoring systems offer precise models of tutoring, but only
for a few components of teaching expertise. Most significantly, although
many systems embed impressive student diagnosis or modeling compo-
nents, they typically fall short in their representation of pedagogical or di-
dactic skills. Thus. an important goal for both human- and computer-based
research in teaching is to develop a more thorough understanding of suc-
cessful tutoring strategies and techniques. In this article, we attempt to for-
malize some important one-on-one tutoring skills, although our current
research by no means addresses all the problems that must be solved to
achieve this goal.

METHODOLOGY

To achieve this level of description of tutoring activities in algebra, we have
adopted a methodology related to knowledge engineering. Researchers in
artificial intelligence who seek to build expert systems use knowledge engi-
neering techniques to extract detailed information about a target subject
from a "domain expert" and then formalize the information so it can be
implemented as "rules" in an expert system.

Subjects

In the context of this study, our knowledge engineering involved videotap-
ing three %-hr sessions with three expert tutors and high school students.
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All students came from Grades 9 and 10 of a local high school. The teach-
ers we taped each had at least 5 years experience teaching high school alge-
bra and had won awards for teaching excellence. As Berliner (1986), among
others, noted, such awards do not ensure that teachers are true expert tu-
tors. Indeed, through our analysis, we see many behaviors we might regard
as questionable teaching practice. However, even after intensive examina-
tion, we still believe the teachers are competent tutors, if not exceptional
ones. Moreover, given the limited knowledge we have of the cognitive skills
of tutoring, they provide ample expertise to attempt to formalize, far more
than we believe will be automated in intelligent tutoring systems in the next
decade.

Two of the three tutors had not previously met the students they tutored;
one tutored a student who was then in her introductory algebra course. Per-
haps surprisingly, we noticed no difference between tutors that we could
confidently attribute to this difference in familiarity. Consequently, for pur-
poses of our analysis, this distinction was disregarded. However, as we note
later, additional studies that systematically vary the tutor's background
knowledge of the student may be important in arriving at a general under-
standing of tutoring competence.

Procedure

\\e examined typical remedial tutoring sessions. The tutors were provided
with problems that the student had failed on a recent in-class examination.
Tutors were not limited to these questions, and all tutors generated their
own problems for the student at appropriate points in the sessions. How-
ever, although the sessions did no: focus exclusively on failed questions,
they contrasted with inquiry tutoring in which students and tutors engage
more in the discovery of new concepts and less in the repair of old ones
(see, e.g., Collins, 1988).

Problems were relatively simple equations and inequalities (e.g., x/3 =
b/2 + c/6). Tutor and student sat at a table and worked the problems to-
gether on paper. The videocamera focused on the work, rather than on the
tutor and student. Following Putnam (1985, 1987), we viewed the videotape

ith each teacher after each session, stopping the tape to ask questions and
discuss various aspects of the tutoring. llitors were encouraged to comment
on any aspect of the session that they wished. These "stimulated recall"
sessions were loosely structured, because our main gaol was to gain insight
into the tutor's thought processes and to clarify here goals and actions. This
technique served to supplement the videotape data, rather than to provide a
complete protocol of the tutor's thoughts while tutorink,. Both tutoring and
recall sessions were transcribed for further analysis. The results presented
here are based on an analysis of three tapes. Although the tapes total no

10
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more than 75 min of tutoring, we estimate their analysis has taken about
150 person-hours.

Analysis

To analyze our data, we began by adopting a technique employed by an-
thropologists studying a variety of interactive behavior.' We repeatedly
watched the videotapes in groups of (usually) three project members. In
each session, we simply observed and discussed the tapes, audiotaping our
own reactions for later playback. Our goal was to characterize what we ob-
served in the interactions, without defining categories or hypothesizing un-
derlying intentions and motivations on the part of the speakers.

The patterns that we noted in this analysis eventually suggested useful
classifications of tutor behavior. At this point, we supplemented our meth-
ods with more traditional protocol analysis techniques and developed a
coding scheme for observed patterns at several levels. These included the ut-
terance (single statement by either tutor or student), the exchange (sequence
of tutor and student utterances completing some local function), the visible
step (sequence of exchanges resulting in an observed algebraic transforma-
tion in the solution of the current problem), and the problem. In addition,
we also posited a more abstract classification focusing exclusively on the
actions of the tutor, which we refer to as activities. llitor activities typically
describe an intention imputed to an utterance, exchange, or step. The three
protocols were independently coded in terms of activities and their associ-
ated utterances, exchanges, and problems. Any discrepancies between cod-
ers were discussed and resolved. The coding scheme was refined and revised
throughout this iterative process.

Having classified patterns of behavior at several levels, our next goal was
to begin to piece together parts of a process model of a tutor's reasoning.
Our assumption is that regularities at all levels of tutoring behavior can be
explained in terms of underlying knowledge structures. In this article, we
attempt to explain only a subset of the patterns we observed, in terms of the
underlying tutoring knowledge they imply. For example, the knowledge of
conversational conventions and natural language that we assume accounts
for many of the regularities at the level of utterances and exchanges will not
be addressed here. Our concern is mainly to describe the kinds of pedagogi-
cal knowledge that account for patterns within and among exchanges,
steps, problems, and especially activities. In this analysis, we have relied on
existing information-processing models of cognition from cognitive psy-
chology (e.g., Anderson, 1983) and artificial intelligence (e.g., B. Hayes-

'We thank John Seely Brown for suggesting this approach and Gitte Jordan and Lucy
Suchman for advising us how to apply this method to our data.

11
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Roth, 1984) to guide the construction of our formative process model of
tutoring.

The analysis and conclusions we present later thus represent a mix of an-
alytic methods. We rely heavily on the use of excerpts from protocols to il-
lustrate interesting patterns we observed. In addition, we offer descriptive
statistics to provide some indication of the relative frequency and impor-
tance of the interesting patterns. Finally, we also present interpretations of
patterns and classifications in terms of a process model of tutoring.

RESULTS

Theoretical Framework

We begin the discussion of our results with an overview of the framework
of our process model. In some sense we are beginning at the end, because a
process model for tutoring is our final goal. However, the framework we
discuss here is only the skeletal outline that does not commit to a specific
theory of tutoring. Presenting the framework first provides a convenient
way to organize subsequent discussion of local observations and conclu-
sions that fill out the framework into a more complete model.

The process model framework we describe is limited to one-to-one tutor-
ing situations in which the tutor is attempting to communicate knowledge
to the student through working a series of problems. More specifically, as
we discuss later, the model is currently limited to remedial tutoring, in
which the student's previous errors on problems largely drive the session.
Within this context, the model is generic in the sense that it tries to describe
the reasoning and knowledge structures common to all competent tutors.
Discussions of the specific tutoring techniques and overall style that distin-
guish different tutorswhich comprise much of what is interesting at an
account of tutoringare deferred until later sections.

As Figure I shows, our model inciudes three main kinds of components:
active memory, knowledge bases, and a tutorial planner. Active memory
encodes a history of specific events (representations of tutor and student
actions) and conditions (representations of inferences by the tutor). Active
memory can include a variety of different kinds of specific information,
some of which may be transient and some much more enduring. In this ar-
ticle, the active memory conditions we discuss include:

I. C..irrent student model. The student model is a database that stores
inferences made by the tutor about the knowledge cr lack of knowledge,
which attempt to account for the student's performance. Typically, the stu-
dent model is the product of a diagnostic process.

2. Current K goals. K goals, or knowledge goals, refer to the specific
topics or concepts that the tutor has decided will be the focus of learning
for the student at a given time. K goals may arise as a function of diagnos-

12



Snrdent ACtialitt Tutor Actions

Tutorial Planning
-Was phvg.0
iM ea wigwam'
arkity ammopiras
imakty solamon
vaersse oar.

Active Memory

Conditions

Current
Mictopten

Current
Tasks

Current
Kgoala

Current
Student Model

Current
POI/C141

.....--....---,

Event
History

I.

9

1.1tiliwledge Bases

Pedagogical Knowledge
.Purposes

Tecluuques

Student Knowledge

Domain Knowledge

FIGURE 1 Schematic diagram of a tutoring process model framework showing condi-

tions and events in active memory, knowledge bases, and tutorial planning that uses

both knowledge and active memory. (Planning results not only in tutorial actions but

also in changes to active memory.)

tic inferences that determine the student's strengths and weaknesses and can
endure across many problems in a session or even across sessions.

3. Current micropians. Microplans refer to brief scripts of activities that
tutors appear to use to organize tutoring sessions. Generally, we found that

most tutoring is opportunistic, driven by the current data or needs of the
student and not controlled by highly structured lesson plans. However, we

did notice brief, script-like, repeated patterns of activities. We refer to these

as microplans to emphasize their brevity.
4. Current tasks. The current tasks that the student and tutor are engag-
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mg in include not only the problem they are working, but also, within the
problem, the specific parts or steps that are now the focus of attention. One
of the main findings we discuss later is that tutors decompose large prob-
lems into hierarchical sets of tasks and organize problem solving for the
student, converting a large and difficult problem into a series of "bite-size"
pieces for the student to accomplish.

5. Current policy. A tutorial policy refers to general constraints or prin-
ciples that tutors appear to adhere to in decision making. In contrast with
microplans that appear to influence tutoring on a relatively local basis, pol-
icies control the pattern of tutoring on a much broader scale, perhaps im-
parting a style.

This list does not exhaust the kinds of conditions and events that a tutor
,:an attend to in making tutoring decisions. We have enumerated here only
the main conditions that we reference later.

In contrast to active memory that encodes specific information about
the tutoring session, knowledge bases represent generic information about
students, teaching, and subject matter. Although much of active memory
changes over time, knowledge bases remain stable; we assume the tutor's
teaching expertise is relatively fixed. Just as we do not include all possible
components of active memory, we also do not discuss all knowledge bases
that contribute to tutoring. For example, we largely ignore tutors' knowl-
edge of students that permits thz;:a develop diagnostic models. As we
noted earlier, many researchers have investigated cognitive aspects of stu-
dent modeling (e.g., Anderson, 1983; Sleeman; 1982). We concentrate here
only on the expertise that contributes to tutors' pedagogical knowledge.

We posit that decision making involving knowledge bases is a two-tiered
tutorial planning process. In the first tier, the tutor consults various condi-
tions and events recorded in active memory to select a pedagogical purpose
or some small set of complementary purposes. A purpose is a general intent
on the part of the tutor to accomplish some particular activity, such as re-
mediating a student error or making a diagnostic inference about such an
error. In the second tier of decision making, tutors implement a purpose(s)
they have chosen by selecting from a knowledge base of one or several tech-
niques consistent with the purpose(s). A technique is a piece of tutoring
knowledge whose execution results in an actual tutoring activity. In choos-
ing the tutoring techniques to accomplish a purpose, we assume that tutors
an consult additional events and conditions in active memory that permit

them to choose the way of accomplishing a general purpose or intent that is
tailored to features of the particular situation.

The selection of a specific technique is assumed to have one of two pos-
sible effects on the tutoring environment. First, a technique may result in a
isible tutoring action (event). For example, when the intention to remedi-

ate a student error is refined into a specific remedial technique, the tech-

14
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nique actually generates an utterance on the part of the tutor. Second, a
technique may result in changes to inferences and conditions in active mem-
ory. For example, the intention to perform student diagnosis will result in
changes to the student model. A particularly important change we wish to
distinguish is that involving the current tutorial microplan. We posit that
task management and remedial purposes, discussed later, may not only
result in the generation of overt tutorial actions but may also alter or re-
place the current tutorial microplan.

We postulate that the sequence of activities just discussed executes in a
cyclic process. The tutor observes the student's response to the current task
and uses this event, together with other conditions and events represented
in active memory, to initiate a tutorial planning process. Once the tutor has
executed an activity, we assume that he or she will wait for the next student
response and then repeat the entire process.

In the following sections, we put some content into our framework. The
next section discusses various aspects of the purposes we observed in the
tutorial sessions. Subsequent sections document a variety of the techniques
that were observed to implement purposes. Separate sections describe tech-
niques that are largely local in scope and those of a more planful nature.

Tutoring Purposes

According to our model, when tutors encounter new events in the tutoring
environment (usually a new student response), they first reason about gen-
eral tutorial purposes that this event and other conditions retained in active
memory might suggest. Generally, our observations suggest that tutors pur-
sue only one purpose at a time, although we note some exceptions. Table I
summarizes all the significant tutorial purposes we observed.

In addition to the name of each purpose, we include a brief description,
a note on the kinds of conditions that might trigger the tutor to consider
that purpose, and a count of the number of times we observed that pur-
pose, across all tutoring sessions. Some purposes were inferred on little visi-
ble data, because they do not normally generate overt tutoring actions. For
example, problem-solving purposes in which the tutor silently solves the
posed problem are assumed to happen when each new problem is generated
or selected. Our assumption is based on existing evidence that tutors com-
pute solution structures in advance (e.g., Clark, Snow, & Shavelson, 1976).

In the following sections, several of the purposes receive little discussion.
Problem generation, local clarifications, and performance assessment (even
though it was a very frequent purpose) were not the source of interesting
patterns of behavior. Motivational purposes are of interest, but these too are
mentioned only briefly. As Table I shows, we found few tutor utterances that
fulfilled an exclusively motivational purpose. However, many tutorial actions
appeared to fulfill a motivational function while also accomplishing some
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TABLE 1
summary of Pedagogical Purposes

Purpose Name .-uipose Description Conditions

Problem generation Generating a new problem for the
student and tutor to solve.

Problem solving Generating reasoning structures
that define the tutor's "ideal"
reasoning for the current problem.

K- goal modification Updating the set of concepts that
the tutor regards as the main ones
that the student should learn.

Task management (a) Deciding which specific task for
the student during the working
of a problem, (b) introducing the
task. (c) monitoring the student's
progress at the task, and (d)
wrapping up trecapping) the task
when completed.

Performance Evaluating the student's performance
assessment at a task. Giving the student

performance feedback.
Knowledge Attempting to understand the student's
assessment general level of competence and

specific skill deficits. Includes mak-
ing inferences about underlying
causes and misconceptions behind
student's visible performance.

Remediation Assisting the student when he or
she has failed.

Local clarification Dealing with student comments and
questions that are irrelevant to the
main flow of the tutoring session.

Motivation Making a deliberate attempt to
maintain or enhance student
motivation.

End problem 27

New problem 27

Changes in student model: 8

inferences of student's
strengths or weakness

Student response, beginning 121

or end of a task

Student response

Student response, beginning
or end of a new topic
(K goal)

135

10

Student error 40

Student query, unclear
student response

4

Student error, beginning or 4

end of a task or problem,
student inferences:
attributions of errors

Note. Names of main pedagogical purposes observed in tutoring sessions, along with descrip-
tions of the purpose, general conditions under which the purpose was invoked. and a gross count of
the number of times we observed the purpose being executed (n).

other purpose. For example, a remedial purpose is often accomplished by
choosing a specific remedial technique that both.provides useful information
and keeps the student's affect high. In general, motivational purposes appear
to combine frequently with other informational purposes. In this article, we
limit ourselves to examination of informational purposes and techniques.

Remedial Purposes

As previous research and models of tutoring suggest (e.g., Putnam,
1987), remedial purposes were relatively frequent occurrences (40 of all 376

11)
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occurrences of purposes; 10.6%). In fact, for every student error we re-
corded, there was a remedial response. At least the tutors we observed were
apparently not willing to let students explore on their own and perhaps dis-
cover their own e-rors. We conjecture that this may be because our tutors
were also teachers who place a premium on pacing students rapidly through
material, given the time constraints of a classroom situation. Alternatively,
teachers may believe that such explorations too frequently lead to unprofit-
able confusion for the student (A. Collins, personal communication, May
1989). Overall, the pattern of invocation of remedial purposes was straight-
forward and requires little additional commentary. On the other hand, the
rich diversity of remedial techniques used to implement a remedial purpose
receives much more discussion.

Knowledge Assessment Purposes

Knowledge assessment is another purpose that models of tutoring might
suggest would be relatively frequent (Ohlsson, 1986). Knowledge assess-
ment, also known as student modeling or student diagnosis, is a 3rner-
stone of several models of tutoring that Putnam (1987) has characterized as
diagnostic-remedial. Such models suggest that the tutor's selection of reme-
dial interventions is largely governed by his or her inferences about the stu-
dents' misconceptions underlying their overt errors. One would, therefore,
predict that many tutor actions cculd be interpreted as intending to gather
data with which to make such inferences, for example, posing questions
that would clarify the student's reasoning. As Table 1 indicates, we found
little compelling evidence for knowledge assessment. In only 10 cases (2.6%
of 376 classified occurrences of purposes) did we observe tutors clearly
making such inferences.

Table 2 shows an excerpt that begins with a simple case of knowledge as-
sessment (Lines 1 to 4). We present the excerpt in detail because it is later
used to make several points. The transcript of the interaction is shown on
the left, and our coding of it is on the right. Parts of the coding scheme are
interpreted as necessary. Appendix A discusses the coding scheme in more
detail. The knowledge assessment shown in the excerpt is typical of most
that we observed. The tutor implements the assessment purpose with a sim-
ple query (Lines 1 to 3). The apparently low importance of knowledge as-
sessment is indicated by th.: fact that the student's indecisive answer to the
query (Line 4) does not trigger any further probing by the tutor. The tutor
proceeds despite the uncertain information. In 3 of the 10 clear cases of
knowledge assessment, it appeared that the tutor did not follow up when
receiving answers that did not permit clear inferences.

We also examined the kind of knowledge assessment inferences the tutor
was attempting to make by looking at the nature of the question posed. In 7
of the 10 cases, tutors appeared to be interested in only very general diag-
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TABLE 2
Excerpt Beginning With Knowledge Assessment

T: Okay, do you want to start on number 17.
1 don't know, have you done these before

3 ever? [The equation is x/3 = b/2 + c/61.
S: I think we have, I don't remember.
T: Now usually the thing that bothers

6 most students is fractions. They could
do without them. So let us get rid of
the fractions.

9 St Okay.
T: Let us multiply every single term
by what we refer to as the least common

12 multiple, something all that can divide
evenly into. What do you think that
would be?

15 S: 6.
T: 6. So I'm going to divide . . .

And then it will turn into something
IS you'll feel more comfortable with. [S

writes a new equation 3: x/3 = b/2 + c/6.) Okay.
Now when 1 say, "multiply each term by 6" I'm going

21 to write in parentheses next to the object 6, okay?
IT writes (6) above and to the left of each of
the three division terms in the equation.) I'm

24 multiplying each thing by 6. Three into 6 goes how
many times? IT points to the 3 under x then)
(the parenthesized 6 above it.)r S: 2.

T: So what are you going to have left?

task (do-problem)
KNOWLEDGE ASSESS (query)

C+
task (do-next-step)

task-intro (state mid goal)

30 S: (No response.]
T: 2x. (S writes 2x below the x/3.)
S: 2x.

33 T: 2 equals . . . 2 goes into 6 how many
times? IT points to the 2 under the b,
then the parenthestzed6 above it.)

36

S: 3.

T: So you'll have . . .

39

S: 3b. [S writes 3b below the b/2.1
T: That's right.

4: T: 6 into 6 goes . . . . (I' points to the
6 in 6/c, then the parenthesizes 6 above
it.)

.15 S: Once.

T: So, you'll just have a c. (S
writes c below the c/6 F now has

C+

task-intro [state low goal)

R+
task (do-next-step)

task-intro (show work, model reasoning)

R+
task (do-next-step)

task-intro (prompt)
Ro

REMEDIAL (give answer)
Re

task (do-next-step)
task-intro (model reasoning)

R+
task (do-next-step)

task-intro (prompt)
R+
task-pa (correct)

task (do-next-step)
task-intro (model reasoning]

R+
task (do-next-step)

task-intro (give answer'

(Continued)
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TABLE 2 (Continced)

48 constructed a new line equation:
2x = 3b c.]

51 T: See now you'll feel much more
comfortable with that; you've just been
doing that all along. Pight?

54 S: Right.
T: So now once you eliminate the
fractions, everything else is like what

57 we've been doing before. The only other
thing remaining to do is to do what to
both sides?

60 S: Divide?
11 By . . . .

63 S: 2. [S writes x = (3b + c)/2.]

T: Good.

task-wrapup [confidence assess query]

C+
task-wrapup [problem similarity]

task (do-next-step)
task-intro [prompt]

R+
task (do-next-step)

R+---
task-pa [correct]

Note. An example of an excerpt beginning with a knowledge assessment purpose. The transcript
of the interaction is on the left, and a simplified coding of the excerpt is on the right. Task indicates
the commencement of a task, usually doing either a whole problem or a step within a problem. The
scope of the task is indicated inside parentheses, following the mak marker. Indentation of tasks indi-
cates conceptual nesting. Upper case markers denote various main purposes like remediation and
knowledge assessment. The bracketed items following different p irpose markers indicate the specific
technique used to accomplish a subpurpose. Dashed lines demarcate separate visible steps and the
exchanges that comprise them. Finally, markers such as R + code student responses, as detailed in
Appendix A.

nostic information (e.g., "Do you understand?" "Have you ever heard of
something called the additive inverse?" "Have you solved inequalities be-
fore?" "Have you done these before ever?"). Only three cases show evi-
dence that the tutor was attempting to diagnose a specific misconception in
a localized part of an equation (e.g., "Do you know why not c/3x?").
Overall, we have found very little evidence for tutors making inferences
about the specific student "bugs" that are the focus of many automated
student modeling programs (Anderson, Boyle, & Yost, 1985; Brown & Bur-
ton, 1978; Sleeman & Smith, 1981). In this regard, our results are consistent
with Putnam's (1987), who found that tutors did not perform detailed eval-
uations of students' knowledge.

Of course it is possible that tutors did perform more extensive knowl-
edge assessment and specific bug detection without any overt evidence.
However, there are other reasons to doubt the validity of a strictly diagnos-
tic-remedial model of tutoring. The interactions we observed rarely had the
"wait-and-pounce" character one might associate with tutors whose policy
was to swing into action only when students made errors. For example, even
a brief glance at our coding of Table 2 and the following excerpt in Table 3
shows that, although the tutoring interaction was dense, very little was clas-
sified as remedial. Thus, in addition to finding little evidence for diagnosis,

13
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we found clear evidence for purposes and tutorial activities other than diag-
nostic and remedial ones.

Task Management Purposes

Along with remediation, the main purpose responsible for the density of
tutorial interactions was task management, accounting for 32% (135 of
376) of all occurrences of classified purposes. Task management is a tutor-
ing activity that has received relatively little attention elsewhere, and we ex-
amine it here extensively. Task management refers to the tutor's reasoning
about the current task in which the student should be engaged. Rarely did
our tutors just present a problem to the student and wait for him or her to
solve it. At the very least, the problem is framed by some commentary or
prompt. In most cases, task management is much more extensive.

Table 3 shows how task management typically breaks down the whole
problem into a hierarchical set of smaller subgoals or tasks that jointly solve
the problem. The top-level task is "do-problem." This decomposed to sev-
eral "do-next-step" tasks. Notice that a step does not necessarily correspond
to a visible inference, but rather to a reasoning step of variable size. The
scope of a reasoning step may be a visible step (e.g., Lines 15 to 18), but may
also be one of :he several smaller decisions that implement a whole visible
step (e.g., in Lines 20 to 24 the task of arriving at a single reasoning decision
is completed, and Lines 26 to 30 use this decision to finish a visible step). Ta-
ble 5 shows an even more extreme case, where nine exchanges (Lines 1

through 51) preceded the first written step. Overall, the number of exchanges
per visible step ranged from one through nine, with an average of three.

Although some tasks may be smaller than a visible step, other tasks done
by the student can also be much larger in scale than a typical single alge-
braic transformation. For example, the tutor may constrain the student to
telescope several steps into one:

[Question is (6x 8 = 8)]
T: Okay. 1"..!-Iw I'm going

3 to put a problem like this,
basically the same problem.
And this time let's try to do

6 it without putting these
intermediate steps in. See

what you can do on that one.
9 S: just directly

give you the answer?
T: Yeah, Can you do that?

12

s: Yes.

task (do-problem)
task-intro [problem similarity]
task (do-next-step)

task-intro [do in head,
prompt]

KNOWLEDGE-ASSESS [query]
C+
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TABLE 3
Simple Task Management Excerpt

T: Try 13. I'll read it: "8 2.x = kx."
[S writes 8 2x = kx.) Again you have

3 a problem where your xs are on both
sides of the equation and you can make
the choice which side you warn your xs

6 on.
S: This side. (S points to right

9 side.)
T: That would be easier. [S writes
+ 2x below both sides.) Correct.

12 S: 8 = kx + 2x. [S writes new line
8 = kx + 2x.)

15 T: That's good. Okay, what do you think
you should do next?

18 S: Factor. [S writes 8 = x(k + 2)-1

T: That's correct. And to get xs to
21 totally stand alone what would you do?

24 S: Divide.
T: Correct. By what?

27

S: k + 2. [S writes /(k + 2) under both
sides. )

30 T: Uh huh.
S: These cancel out. (S cancels
out the k + 2 terms on right side.)

33

T: Uh huh.
S: x = 8/(k + 2) (S writes x = 8/(k + 2).)

36

T: That's correct. Now do you feel you
39 want more practice because . . . or do

you feel comfortable with it?

task (do-problem)
task (do-next-step)

task-intro (problem similarity, state
mid goal)

R+

task-pa [correct]

task (do-next-step)
R+

task-pa (correct)
task .(do- next -step)

task-intro (prompt)
R+

task-pa [correct)
task (do- next -step)

task-intro (state high goal,
prompt[

R+
task-pa (correct)

task (do-next-step)
task-intro (prompt)
R+

task-pa [correct)
task (do-next-step)

R+---
task-pa (correct)

task (do-next-step)
R+---

task-wrapup [correct, confidence
assess query)

Note. An example of an excerpt showing task management purposes. Indentation of tasks indi-
cates conceptual nesting. For example, several do-next-step tasks are inside a do-problem task. The
activities task-intro, task-pa (performance assessment), and task-wrapup are parts of the "script" of
activities of managing a task and are nested under the task they comprise. The bracketed items fol-
lowing task-intro, task-pa, and task-wrapup markers indicate the specific technique used to accom-
plish this subpurpose. Dashed lines separate visible steps and the exchanges that comprise them. See
Appendix A for a more detailed discussion of the coding of student responses.

2 1
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T: Okay.
15 S: 6X equals R +

zero, so X equals zero
(student writes 6x = 0) (x = 0)

18 T: Good task-pa [correct)

Overall, when managing tasks for the student, the tutors were able to vary
the bite size of the task from single reasoning decisions within an algebraic
transformation to a decision that itself comprised many such trans-
formations.

In many cases the desired scope of the task is explicitly communicated
by the student by the technique chosen to introduce the task (task-intro).
For example, at Line 3 in Table 3, the tutor's introduction loosely relates the
problem to previous ones (problem similarity technique) and tells the stu-
dent chat the next task should just be to get all the variables on the same
side of the equation (state mid goal). Different introductory techniques can
have more or less constraining information, as we discuss next. At Line 16
in Table 3, for example, the tutor just uses a prompt technique, which im-
plies little constraint.

The excerpt also indicates that task management has a loose, script-like
quality. The idealized script for managing tasks of both wide scope (do-
problem) and narrower scope (do-next-step), appears to have the following
parts: task introductions (task-intro); task monitoring, in which the tutor
checks progress and assesses performance (task-pa); and task wrapup or
summarization, in which the tutor concludes one task and prepares for the
next (task-wrapup). As Table 3 shows, different parts of the script can be
deleted (e.g., do-next-step tasks are often not wrapped up), and the specific
technique chosen to implement a script part can radically change how that
part appears. Later sections that discuss specific techniques document this
flexibility in greater detail.

Viewed more globally, the most salient property of the excerpts in Tables
2 and 3 is the remarkable intensity of the interaction. The discussion does
not focus directly on obtaining the right answer or even on the correct next
isible step in the solution (i.e., going from x/3 = b/2 + c/6 to 2x = 3b + c.

Instead, the student and tutor join in a discussion of the cognitive reason-
ing processes required to make the next algebraic transformation. This
contrasts significantly with classroom procedures. The classroom teacher
usually has far too little time. to engage in microscopic discussions of the
ideal reasoning for a problem. Rather, the teacher typically lectures the
class on general techniques used to solve a particular class of problems.
Only in a tutorial session does a teacher have the luxury of actually model-
ing ideal reasoning and coaching the student at the level of the cognitive
processes that the tutor would like the student to learn.
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Simple Tutoring Techniques

This section discusses many of the specific techniques we observed tutors
using to accomplish different purposes outlined previously. As in the dis-
cussion of purposes, not all techniques are mentioned in detail. We first dis-
cuss simple techniques of relatively brief scope; later sections discuss more
complex techniques.

Appendix B gives a complete list of all the important techniques that we
observed. Each of the 44 en,ries names a technique, gives a brief descrip-
tion, notes the purposes the technique could be used for (some were multi-
purpose), gives a count of the number of times the technique was observed,
and mentions the topics or topics or cognitive objects that could be dis-
cussed using the technique.

Although performance assessment accounted for a high percentage of
occurrences of techniques (38%; 135 of 354), tutors used relatively few
techniques in giving students feedback about their performance. Only four
distinct performance assessment techniques were noticed, accounting for
11% of all techniques (4 of 44). Typically, tutors either told the student his
or her performance on the current task was acceptable or not acceptable,
or they employed a "grain of truth" technique in which the student was
given some credit but warned that some aspect of his or her task perform-
ance was at least strategically dubious, if not mathematically invalid, for
example:

[Question is: Solve for X in x/b c = a]
I What do you think I'm REMEDIAL [state low goal]

3 suggesting you eliminate then
on the left hand side?
IS begins to write a/1 under the R
c.] That's right. What's the opp ... task-pa [grain of truth]

7 Well thats good ... c/I is nice ... REMEDIAL [explain bug]
See these are two separate terms,
right? D points to the c and x /b.]

Here the student had already made an error in executing the next step,
and the tutor was attempting to remediate (Line 2). The first remedial at-
tempt appears to have failed, because the student is now trying to divide by
1 (Line 4). In response to this action, the tutor's performance assessment
implies the student is incorrect but hedges (grain of truth), possibly to
maintain the student's affect after several errors.

The preponderance of techniques we catalogued implemented task man-
agement or remedial purposes, and many were used for both purposes. The
overlap is accounted for by the fact that many techniques can serve not
only to remediate a student error after it has happened, but also to coach a
student before the student makes an error (task-intro subpurposes of task
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management), or even to wrap up a task after it has been accomplished
(task-wrapup). Forty-five percent (20 of 44) of all techniques could be used
for task management purposes; we observed 24 distinct techniques that tu-
tors used to ...mediate student errors. Remedial techniques accounted for
only 15010 (53 of 354) of all occurrences of techniques, limited by the total
number of errors made by all students (40). Unlike performance assess-
ment, however, one or two techniques did not dominateTutors used a di-
verse collection of remedial techniques.'

Techniques Discussing Problem Conditions, Procedures,
and Concepts

As the table in Appendix B indicates, remedial and task management
techniques can be distinguished in terms of the kinds of problem features
and cognitive objects they discuss. Problem conditions refer to properties
of the current algebraic expression that should be attended to in deciding
on the next thing to do. Several different techniques made use of problem
conditions. Using a problem description technique, a tutor simply draws the
student's attention to some salient part of the question and away from irrel-
evant parts. The problem similarity and problem difference techniques ex-
telid problem description. In addition to, or sometimes in place of,
pointing to the relevant features of a problem, the tutor referenced similar
(or contrasting) past problems. Perhaps the motivation behind this tech-
nique is to help students !tarn a metacognitive skill (when you al e stuck,
look for similar problems you have solved in the past to help you decide
what to do now), in addition to giving them information that might be use-
ful in solving the current problem.

Tutors also frequently gave task management hints or remedial help by
discussing or naming the procedures relevant to the current question. For
example, in the following brief excerpt, the student makes several false
starts (Lines 7, 10), and at Line 16 the tutor suggests the factoring proce-
dure. The student immediately succeeds.

[S writes: mx px = 1]

T: Okay. Now you've got two
3 terms with x in both terms.

Right. We still need x all by
itself. Do you have any idea

6 how we can get x all by itself?
S: By dividing.

task (do-next-step)
task-intro

[state hi goal, prompt]

R?

=The number of instances of remedial techniques (33) is greater than the number of student
errors (40), because tutors sometime apply several techniques to one error. The total number
of technique applications (334) is different from the total count of purpose instances (376), be-
cause some purposes (e.g., problem generation) do not result in a technique being used.

24



T: By dividing. What do
9 you mean by dividing?

S: If I divide this side
by x and this side by x, you

12 see? And then both sides equal out.
T: Okay.
S: So I x would be left.

15 T: Okay. You couldhow
about factoring, do you know
how to factor?

18 S: Yes. I would. . . .

[S writes: x(m p) = t]

KNOWLEDGE-ASSESS
[clarify]

R

task-pa [grain of truth]
REMEDIAL [suggest

right procedure]
R+
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Mathematical concepts were also discussed, using several techniques,
about as frequently as procedures (n = 3 for concepts, n = 4 for proce-
dures). For example, in Table 4 at Line 21, the student and tutor first men-
tion the concept of the additive inverse, then attempt to use it in relative
isolation (Lines 23 to 25), and finally they attempt to apply it to the current
problem (Lines 27 to 28).

Techniques Discussing Goal Structures

Perhaps the least familiar kinds of topics in reasoning discussions were
goal structures. They were also the most frequently referenced cognitive ob-
jects (n = 37) in techniques that introduced tasks and that provided reme-
dial assistance. Goal structures refer to the hierarchical "tree" of decisions
that is generated when one solves an algebra problem by "problem decom-
position": decomposing the main goal of solving a problem into succes-
sively smaller goals until each goal can be executed directly. To understand
the many reasoning discussions that involve goal structures, we have explic-
itly encoded the goal structures needed to solve first semester algebra prob-
lems. This process was relatively simple, because the goal structures that
suffice to analyze tutorial discussions are virtually identical to the goal
structures used by the algebra "expert system" embedded in our algebra tu-
tor (McArthur et al., 1987). Figure 2 gives an abbreviated representation of
the goal structures for the excerpt in Table 2. Bundy and Welham (1980)
also provided a similar vocabulary for describing such algebra symbol ma-
nipulation goals.

The excerpt in Table 2 exemplifies several important points concerning
how goal structures are used by tutors in many interactions to guide reason-
ing discussions. First, the goal discussion begins in a top-down fashion. In
discussing the goals for the next step, the tutor does not begin with a low-
level description of the mathematical transformation to effect. Rather, she
begins (in Lines 6 to 8) by mentioning a middle-level goal, eliminate frac-
tions, that should be achieved. Moreover, several intermediate levels in the
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TABLE 4
An Excerpt With Discussion of Additive Inverse Concept

(T writes down equation "mx 4 = 2a".1
T: Okay, what we have here is

3 "mx 4 = 2a. And the reason I asked you
prior to this is you had any difficulty
solving equations because the procedure

6 we're going to use here is exactly like
everything you've done before. Before
you came with two variables. The first

9 thing you want to know . . . it says solve
for x. This is the object, or you
might say the variable you want to

12 isolate. (T boxes the x.1 You want
to get it all by itself. Therefore,
your objective is to get rid of

15 everything about it. You'll notice the
4 here. IT points to the 4.1 Do you
know how to eliminate the 4?

18 S: Yes, subtract it from both sides.
T: Okay, when you say " subtract it,"
have you ever heard of something called

21 the additive inverse?
S: Yes.

T: What is the opposite of 4?
24

S: + 4, positive . . . .

T: Okay let's add the additive inverse,
27 add +4 to both sides. Why don't you

do that? (S puts +4 below both sides
of the equation.)

task (do- next - problem)
task (do-next-step)

task-intro (problem similarity, state
high goal, state mid goal, state

low goal, prompt howl

R

REMEDIAL (apply-concept]
KNOWLEDGE-ASSESS (query)

C+
task (local-concept-use)

R+
task-pa (correct)

task (map-concept)
task-intro (prompt)
R+

Note, Lines 20 to 30 show the tutor and student applying the concept of the additive inverse. In
this complex remedial technique, the concept is first introduced through a query (ine 21), then exer-
cised in isolation (Line 25), and finally mapped onto the current problem (Line 27).

goal structure may be mentioned before the tutor begins to discuss the ac-
tual algebraic manipulations. Here, for example, a lower level subgoal,
"multiply by least common multiple," is also discussed as part of the task-
intro phase for this step.

Second, b:cause of the richness of the goal structures, tutors can choose
among a variety of levels of support for the student. The beginning mono-
logue of Table 4, for example, shows an extremely detailed top-down dis-
cussion of goal structures. Sandwiched between a description of problem
similarity and a prompt to the studtnt is the tutor's description of the full
range of high-, middle-, and low-level goals that should be considered in
the problem. At the other extreme, tutors often introduce a task with just a
prompt:

[T writes 5x 7 = 7] T. How would you tackle a problem like that?

26
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FIGURE 2 Hierarchical goal structures for tutoring excerpt. (The figure shows a sim-
plified version of the goal structure needed to generate the problem-solving step found
in the transcript excerpt in the text. Higher level goals are connected to its subgoals by
arrows. When a goal has several subgoals, they are interpreted conjunctively; that is,
they all must. be achieved to satisfy !tie higher level goal. Below the name of each goal is
a pair of algebraic expressions describing the goal's effect. The input expression to the
goal is on the left. The goal's output follows an arrow (-), on the right. Several lower
level goals, which are not discussed in the text, are omitted from the figure.)

The goal structures permit tutors to vary the relative contributions of the
tutor and student in deciding and satisfying each goal. For each task intro-
duction, tutors must decide how far down the hierarchical goal structure
they will cut off their descriptions. The further down the tutor goes, the less
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the student must do, and the more support they give. In Table 2, the goal to
eliminate fractions is simply given by the tutor, as is the subgoal "Multiply
by least common multiple" (Lines 10 to 12). On the other hand, "Find low-
est common multiple" is prompted for by the tutor but is satisfied by the stu-
dent (Lines 13 to 15). Similarly the goal simplify terms is shared by the
student and tutor, with the tutor mentioning the terms to divide and the stu-
dent simply carrying out the divisions and writing the results (Lines 24 to
45). In addition, tutors often decide to abbreviate their reasoning descrip-
tions by leaving out some goals in the hierarchy. Unfortunately, in some
cases high-level goals are eliminated, and students and tutors focus on low-
level subgoals directly involved in computing an algebraic transformation.
This policy promotes a "cookbook" problem-solving approach in which the
student is drilled on what to do without mentioning why it is being done.

Third, once the tutor and student have collectively discussed the goals
and implemented them, arriving at a new step in the solution (Line 48 in
Table 2), the tutor does not simply go on to the next step but reminds the
student of the reason for the low-level multiplications and simplications,
namely, to get rid of the fractions (Lines 55 to 57). In other words, once the
student and tutor have proceeded down the hierarchical goal structure for
this step, the tutor again focuses the discussion on higher-level goals. This
time the intent behind discussing the high-level goals is not to help the stu-
dent determine which lower level actions to do next, but rather to provide a
justification for the reasoning that has just been accomplished. Thus, goal
structures prove useful in task-wrapup phases of task management as well
as in task-intro phases.

Finally, as a general point, it is interesting to note that in reasoning dis-
cussions the tutor and student talk about problem-solving goals for which
no formally specified vocaoulary exists. Algebra texts provide a formal vo-
cabulary for things like the axioms of mathematics. Yet these concepts
comprise remarkably little of the tutorial interactions. Much more com-
monly mentioned are concepts such as isolating the variable, attracting oc-
currences of the variable closer together, and eliminating terms. The
vocabulary students and tutors share to talk about such problem-solving
goals appears to arise tacitly and informally. Unfortunately, we have ob-
served that this can result in terminological misunderstandings that foil the
tutorial exchange. For example, one tutor systematically used the phrase
"isolate the variable" to denote what we mean when we say "collect like
terms" (e.g., transforming 2x + 3x = 5 to 5x = 5).

Complex Tutoring Techniques

The aforementioned techniques are of limited scope because their effects
on the tutorial process are temporally brief. For example, a simple remedial
technique is usually completed in one exchange, as is the introduction of a
task or query that assesses the student's current knowledge. However, our

2d



25

analysis of the tutoring sessions also indicates the existence of decisions
that have a scope longer than a few exchanges, possibly as long as several
problems. In this section, we describe some of these patterns and discuss
the kinds of cognitive structures that might account for them.

Simple remedial techniques typically interrupt the flow of task manage-
ment for one or two exchanges, then relinquish control (see, for example,
Lines 31 to 32 of Table 2). By contrast, other remedial techniques can gen-
erate a series of actions, no* just one. We refer to such techniques as com-
plex. Appendix B lists the complex remedial techniques we observed. Com-
plex remedial techniques were used frequently. Fifty -three percent (8 of 15)
of all remedial techniques were complex, whereas 30% (16 of 53) of all oc-
currences of remedial techniques were complex. As the examples in the ta-
ble suggest, we regard such complex techniques as implemented by scripts
similar to those characterizing task management. The tutor implements a
complex remedial technique by interpolating a sequence of tasks into the
ongoing flow of task management.

Table 5 gives an extended example of complex remedial techniques in
action. After a couple of false starts by the student (Lines 3 to 7), the tutor
invokes a complex remedial technique referred to as goal-given-feature. It is
complex in the sense that it decomposes into several subtasks: first, orient-
ing the student to the variable in the problem (find-variable); second, find-
ing the relevant feature of the problem involving the pattern of variable
occurrences (find-feature); and finally, choosing the correct action, given
the feature (step-given-feature). In this case, the first two subtasks are intro-
duced and accomplished successfully (Lines 12 to 20). However, the student
fails to accomplish the final subtask after being prompted (Line 21).

Having failed with this remediation, the tutor initiates another complex
remedial technique, map-similarity (Line 22). The script for this technique
involves three subtasks: finding a similar problem, finding the specific op-
eration in that problem that is relevant, and mapping the operation into the
current problem. The tutor begins this remedial interaction by initially skip-
ping the step of finding a similar problem (Line 23) and introducing the
task of finding the operation from a past similar problem. However, when
this fails (Line 26), the tutor reintroduces map-similarity, beginning at the
start of the script (Line 28). The subtask of finding a similar problem is
done by the tutor herself (Lines 30 to 32). Now, with the similar problem
visible, the student's first attempt to find the operation is wrong (Line 33),
but with the interpolation of a simple remedial technique (try-again), the
student is successful (Lines 37 to 38). Having completed two of the three
subtasks of map-similarity, the student's first attempt at the final subtask
(map-operation) is immediately correct (Line 39). Finally, the tutor assesses
the student's performance on both the nested remedial task (Line 43) and
on the completion of the step as a whole (Line 47).

This example illustrates a number of important points about complex
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TABLE 5
Example of Complex Remedial Techniques in Use

(Writes: bxc)
3 S: So, now I want to get

rid of the a.
T: What . . Umm. Let's

6

S: Divide.
'I': If you divide right

' now by a . . . check your
terms Look at these terms
again. What do we have here.

12 What are we solving for?
S: X.
T: Where are the xs in

15 the problem?
S: Here and here. [Points
to xs on each side of the

S equation.)
T: Okay.
S: So you want to get . . . .

21 [Short pause.)
T: So what did we do in
the other problems when we

:4 had xs on both sides of our
equal sign?
S: (Not clear. Maybe "I'm
lost here.")
T: Okay. Let's took at one
of the problems we did

30 before. Here was a problem
with xs. (Shows paper with
previous question.)

33 S: We factored.
T: Right. But before we
factored, what did we do with

36 our xs?
S: We brought both of
them on the same side.

39 T: Right. Okay.

S: Okay. So I put x
42 here.

T: Right.
(S Writes left-hand side of

45 equation: ax + x>.)

T: Yes.

---
task (do-next-step)

R

R

REMEDIAL [goal- given - feature[

task (find-variable)
task-intro [prompt)
R+

task (find-feature)
task-intro (prompt)
R+

task-pa [correct)
task (step - given - feature)

Ro
REMEDIAL [map-similarity)

task (find-similar-operation)
task-intro (prompt)

R'

task (find-similar-problem)

task (find-similar-operation)
task-intro [prompt

R

task-pa [grain of truth]
REMEDIAL [try again)

R+

task-pa (correct)
task (map - operation)

R+

task-pa [correct)
R+

task-pa [correct)

(Continued)

BEST CON AVAILABLE

:)0
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TABLE 5 (Continued)

48

S: Plus x . . . minus b
minus c.

51 IS Finishes writing equation:
ax+xpbc.I

R+

techniques and the script-like nature of tutoring in general. First, because
complex remedial techniques often generate several tasks, not only are re-
medial purposes interpolated within task management (when errors occur),
but they also generate task management purposes. For example, using the
complex technique map-easier-problem, we have observed tutors generate
several simpler problems, complete them, and successfully resume a sus-
pended question. As a consequence of such techniques, the nesting of pur-.
poses in tutorial reasoning can be very deep, indicated by the different levels
of indentation in Table 5. We believe this reciprocal nesting of task manage-
ment and remedial purposes and techniques accounts for much of the rich-
ness and diversity observed in tutors' behavior.

Second, tutors' implementation of complex remedial techniques shows
much of the flexibility that we observed in their execution of task manage-
ment scripts. In Table 5, the tutor exemplifies several kinds of deviations
from the prototype scripts listed in the table Appendix B. Tutors may de-
cide to complete some subtasks of a remedial script themselves (Line 28,
Table 4). Similarly, they may omit subtasks (Line 23). If a subtask of a re-
medial script is not completed successfully, tutors. may either exit the whole
script and try another technique (Lines 20 to 22), or they may persist with
the subtask and interpolate yet another remedial technique (Line 35), or
they may back up and insert a subtask that was initially omitted (Line 28).
Finally, as with task management scripts, much of the flexibility in imple-
menting a script derives from the tutor's wide choice of techniques for in-
troducing a task. As discussed earlier, tutors can supply either much or very
little information when introducing a task.

Process implications of complex techniques. Although simple tutor-
ing techniques are executed and then forgotten, the task management and
remedial scripts analyzed earlier clearly indicate that many tutorial deci-
sions persist for extended periods. We suggest that when tutors select a
technique or purpose to execute from their knowledge bases, in cases where
that technique implies a script of activities, the script is executed by creating
a microplan. In cases where a technique involves a single action, a plan is
not necessary, because the action can be done immediately. A microplan is
an instantiation of the script in active memory that permits the tutor to re-
member a series of actions that must be executed in the future. For exam-
ple, when executing the technique map-easier-problem (see Appendix B),
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the tutor will instantiate the script as a microplan that says first do-easier-
problem (create and do an easier problem with the student), then map-
problem (return and apply the lesson learned with the interpolated simpler
plan to the original problem). Assuming the tutor has no micro-plans in
active memory preceding this instantiation, the first element of the new mi-
cro-plan becomes the next action and generates the current task for the stu-
dent and tutor to accomplish, and the second element is retained in active
memory until the first one is completed.

This kind of planning is relatively straigh1iorward; however, the preced-
ing analysis of task management and complex remedial techniques suggests
that additional sophistication is common. The execution of a given micro-
plan may be modified by deleting or adding various elements. Alternatively,
one micro-plan may be dropped, and its place taken by another. Finally, in
the course of executing one plan, if difficulties arise, the tutor may suspend
the plan and insert several others, returning to the original plan only when
the interpolated ones are complete.

Constraints on the Selection of Techniques

The flexible way tutors implement scripts and the many techniques avail-
able to tutors to introduce a task, or to remediate a mistake, raise the issue
of how tutors choose among the techniques at their disposal. Previous sec-
tions have simply described scripts and catalogued different purposes and
techniques. In this section, we attempt to examine severalof the factors that
may play a role in tutors' choices among their options.

Many of the events and conditions that determine the invocation of tuto-
rial purposes appear clear cut. For example, students' mistakes always trig-
ger remediation, and the completion of one task always triggers a new one.
But what conditions are attended to in deciding the specific remedial tech-
nique or in determining the technique for introducing the task? We first dis-
cuss some of the factors that appear to constrain the selection of task
introduction techniques, then look at some factors determining the selec-
tion of remedial techniques. In neither case is our analysis exhaustive.
Given our relatively limited data, we have examined the roles of only the
most salient conditions.

Constraints on Task Management

Figure 3 graphically shows the level of support given by the three tutors
across time when introducing tasks. The levels of support (y-axis) have been
arranged into an ordinal scale, based on the principle that more detailed in-
formation about the student's goal gives greater support. Prompts (s) give

-essentially no information. A tutor mentioning only high level (h) goals of
structures, as in Figure 2, gives relatively little support. Mention of lower
level (/) goals gives greater support, because they more explicitly describe
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the kinds of manipulations required of the student. Finally, mention of
goals at several levels (e.g., hml) gives the greatest support.

The patterns in the graphs suggest that the tutors' level of support is not
random. The first graph in Figure 3, for example, shows Tutor A beginning
with a very high level of support. The excerpt in Table 4 is an example of
the high level of support initially given by this tutor (hml or ml). By ap-
proximately Exchange 50 in the transcript, the level of support has dropped
to an asymptote where in most cases either the student does the task after
prompting by the tutor, or the tutor describes only high-level goals (m h,
or s). Near 100, the tutor's level of support again jumps to high an +e-

clines to a low asymptote by the end of the session. In contrast, Gra :s 2
and 3 in Figure 3 show that Tutors B and C have a very different pattern of
support. With only one exception, these tutors supply little support when
introducing tasks, often simply prompting the student.

Hypotheses concerning the reasons for these different patterns of sup-
port cannot be firmly substantiated, given our limited data. Nevertheless,
we can offer some compelling conjectures, buttressed by existing views of
tutoring expertise. Our first conjecture is that Tutor A is following a policy
of "modeling-scaffolding-fading." She begins by supplying extensive sup-
port, often doing (modeling) the correct reasoning herself. She continues to
provide considerable direction (scaffolding the student's problem solving)
and progressively withdraws more and more support (fading). On this inter-
pretation, the tutor's behavior appears intuitively reasonable. Indeed, Col-
lins, Brown, and Newman (1989) extensively documented this style of
tutoring, discussing in much more detail its merits as part of a general
model of cognitive apprenticeship. Based on our data and this general view
of tutoring, we posit that modeling-scaffolding-fading is a tutorial policy
that tutors can deliberately adopt. In contrast, Tutors B and C appear to be
following a policy we refer to as constant-coaching. Their behavior during
the tutoring session, together with comments in the postsession interviews,
confirms that Tutors B and C deliberately supply little information when
introducing a task, instead preferring to deal with student difficulties when
errors arise.

The graphs of Figure 3 suggest other factors may also modulate tutors'
introduction and management of tasks. In particular, the graph for Tutor A
indicates that the cycle of modeling-scaffolding-fading does not span the
whole tutoring session, but rather begins and ends twice. For Tutor A, the
beginning of such a cycle is perfectly correlated with the commencement of
a new topic in the tutoring session (shown by the vertical dotted line in the
graphs of Figure 3). For Exchanges 1 through 88, the questions posed to
the student concern simple factoring concepts. At Exchange 89 the concept
of solving linear equations with fractions is introduced. When the first
question involving this concept begins, the tutor assesses the student's
knowledge of the concept, indicating that the tutor is aware of a topic
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change. Subsequently, the tutor's support returns to a high level and then
declines over the next several questions.

A final interesting observation concerning Figure 3 is the apparent lack
of sensitivity of tutors' introduction and management of tasks to student
errors. Errors are shown in Figure 3 as asterisks at the exchange where the
error occurred. An obvious prediction might be that the tutor's level of sup-
port would increase following student errors and decrease only after stu-
dents succeeded in accomplishing tasks without errors. Although 'fluor A
shows one case of fading after a long period without errors (Exchanges 10
to 50), we also see cases of fading support during a period of many errors
(Tutor A, Exchanges 125 to 200) and several cases of relative indifference to
student errors (Tutors B and C).

Process implications of task management constraints. In general, tu-
tors appear to attend to several kinds of factors in deciding how to intro-
duce and manage reasoning tasks for the student. In our process model,
these constraints take the form of conditions represented in the tutor's
active memory. At least two kinds of active memory conditions appear nec-
essary to account for the data in Figure 3. First, we posit that tutors re-
member a current tutorial policy, which is consulted by tutors to constrain
their selection of techniques for introducing the managing tasks. Second,
we suggest that important mathematical topics or concepts become K goals.
K goals are representations of particular topics in the tutor's active memory
that record the knowledge or concepts the tutor is currently trying to com-
municate to the student. We speculate that K goals play several roles in tu-
toring. In addition to modulating the choice of techniques for introducing
and managing tasks, they also play a role in remediation, which we discuss
later. Several other roles are possible. For example, K goals may be used to
generate new questions for the student. Tutors of:en generate questions,
which, if answered correctly, should elicit the concepts that are current tu-
torial topics (e.g., McArthur, Stasz, Hotta, Peter, & Burdorf, 1988).

Constraints on Remediation

Our analysis of the constraints on selection of remedial techniques was
guided by initial observations that the nature of remediation chosen by our
tutors appeared to depend on several properties of the students' errors.
These properties included causality (the imputed reasons for the student's
error), topic (whether the error pertained to a tutorial K goal or not), and
context (whether the error was the first mistake on a tas'. or not). Accord-
ingly, we classified student errors into several categories:

1. Slip. On the basis of student's past and subsequent performance, the
error appeared to be a simple slip.

2. Knowledge error, lesson topic. On the basis of the student's perform-
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ance, the error appeared to be due to a lack of knowledge or flaw in
knowledge. We limited this category to errors in knowledge that per-
tained to the current topics (K goals) that the teacher was attempting
to communicate to the student.

3. Knowledge error, not lesson topic. The error appeared to be due to a
limitation in the student's knowledge of topics that were not the cur-
rent focus of attention.

4". Nested error. The error was not the first one the student made in at-
tempting to complete a task, or was nested in a remedial task that
was itself triggered by an error (e.g., Table 5, Line 35). This category
dominates the previous three. Regardless of cause, any nested error
was classified here.

These error features did not appear to determine the selection of specific re-
medial techniques, but rather limited the choice to a general kind of tech-
nique. One useful division was to differentiate performance-correcting
techniques and knowledge-correcting techniques. Performance-correcting
techniques aim mainly to help the student accomplish a particular task on
which the student has previously failed. Putnam's (1987) finding is that the
preponderance of teacher remediations are of this type. On the other hand,
knowledge-correcting techniques appear to have two goals. In addition to
helping the student accomplish the current task, they take the error as an
opportunity to teach the student a piece of knowledge relevant to accom-
plishing the current task. Using this basic division, we developed four cate-
gories into which all the remedial techniques from Appendix B were
classified:

1. Simple, noninformationa/. Simple techniques that tell students they
have made an error but give no guidance about correcting it (e.g.,
try-again, continue).

2. Simple, task terminating. Simple techniques that tell the student
what the right reasoning is for the current task (e.g., suggest-right-
procedure, give-answer) or that make it unnecessary for the student
to have to accomplish the task change-problem).

3. Simple, informational. Simple techniques that discuss aspects of the
correct reasoning or conditions to attend to in order to reason cor-
rectly, but which do not complete the task for the student.

4. Complex. All complex techniques are informational in the just-men-
tioned sense.

Generally we regard the first two categories as mainly performance-correct-
ing techniques, because they do not use students' errors as a basis for im-
proving their abstract understanding of concepts, goals, procedures, or

3t
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TABLE 6
Remedial Techniques Classified by Error Type

Technique Category

Simple Non Simple Task Simple

Error Category Informational Terminating Informational Complex

Slip 9 1 1 0

Nested 1 9 1 2

Knowledge error. nontopic 0 4 0 0

Knowledge error. topic 0 2 9 14

Note. Columns represent a classification of remedial techniques. Each remedial tech-

nique was classified into one category. Rows represent a classification of student errors. Each

cell contains a count of the number of remedial techniques of a particular type that followed a

particular error type. The total in all cells (53) is greater than the total number of errors ob-

served, because some errors were followed by more than one technique.

conditions of their application. The latter two categories indicate that the

tutor intends to impart such knowledge.
Our analysis of the constraints on selection of remedial techniques was

limited to relating the previously discussed classification of error types to
the class of remedial technique that followed them. Table 6 shows, perhaps

not surprisingly, that responses to slips were almost always noninforma-
tional. ibtors appear to assume that slips require only redirecting the stu-
dent's attention. Nested errors were usually followed by task-terminating
techniques. That is, if students made a second error on task, tutors usually
brought that task to an end immediately. Tutors apparently were not will-

ing to let students' errors get "out of hand." Perhaps more interesting,
tutor's treatment of knowledge errors was radically different, depending on
whether the error involved a current topic or K goal. Errors pertaining to
current K goals were always dealt with using information techniques; errors
not related to the current K goals were never dealt with this way. In other
words, our tutors largely reserved knowledge correcting techniques for non-

nested errors on currently important topics.

Process implications of remedial constraints. As with task introduc-
tions, tutors appear to attend to several factors in deciding how to remedi-

ate student errors. K goals that tutors represent in active memory seem to
play an important role here, as well as in constraining ask management. In
addition, some rudimentary student modeling or student diagnosis also ap-

pears important. Our tutors at least seem to attempt to distinguish acciden-
tal slips from mistakes that imply knowledge errors, although they do not

appear to infer any specific bug that might underly the mistake. Finally, in

addition to conditions, the history of tutor/student events (see Figure 1)

plays a role in selecting remedial techniques. Tutors can determine if an er-

ror is nested only by reference to the local history of student responses.
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DISCUSSION

In this section we discuss our findings along several dimensions. First, we
discuss the limitations of our results. Next, we note several implications
of our process model of tutoring and compare our findings and process
model to other views of teaching and tutoring. Finally, we discuss some
possible implications of our results for computer-based tutors and for
teacher training.

Limitations

There are several features of our study that both suggest limitations on the
generality of our current findings and suggest future directions for research
in the study of human tutoring skills. First, the kind of one-on-one tutoring
e examined is not representative of all tutoring interactions. Remedial tu-
toring, centered on working through problems that students have previously
failed, is certainly very common. Indeed, almost by definition, tutoring
connotes a remedial image; someone being tutored in a subject is often pre-
sumed to be doing poorly. However, in inquiry tutoring, students are gener-
ally learning new concepts rather than fixing old ones. The ftindamentally
different goals of remedial tutoring and inquiry tutoring make it likely that
%%e will find significantly different kinds of activities in each (see, e.g., Col-
lins, 1988, on different goals of inquiry teaching). Clearly, any model of tu-
toring that attempts to span both remedial and inquiry tutoring skills will
have be to be based on intensive studies of experts in each area.

In addition to the kind of tutoring, we believe That several other variables
need to be systematically studied to arrive at a more general model of tutor-
ing. Among the more important variables are student-tutor familiarity and
tutor practice effects. Two of our tutors had never met the student they tu-
tored, and *hough we did not notice systematic differences attributable to
familiarity, in general, prior knowledge of the student may play a role. For
example, R. T. Putnam (personal communication, May 1989) suggested that
tutors who are familiar with their students may be more likely to use curricu-
lum scripts. Similarly, Clark et al. (1976) observed that tutors' performance
in physics tutoring appeared to improve across several sessions with different
students. Thus, it is likely that the tutor's familiarity with the topic, with the
bottlenecks in learning it, and with the specific tricks for teaching it may be
as important as the tutor's history with the student. Both variables require
further examination before their implications for our current model r f tu-
toring can be assessed. We are currently engaged in a study that focuses on
inquiry tutoring in which tutors teach several different students.

Planning and Problem Solving in Tutoring

As a study of remedial tutoring, our findings and model suggest that tutor-
ing is largely, but not exclusively, data driven. That is, it is primarily trig-
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gered by events that arise in the tutoring session (e.g., a specific student
error) and is less governed by enduring constraints (e.g., a lesson plan). For
example, remedial purposes are invoked only (and always) when students
make errors. A second and related point is that the scope of most tutorial
decisions is brief or local, where the scope of a decision is defined as how
long (in terms of utterances and exchanges) a decision continues to have an
effect on tutorial performance. We define tutorial decisions of local scope
as tactical ones; thus, our model suggests most tutoring is both data driven
and tactical. The tactical character of tutoring is well illustrated by simple
remedial techniques. They are triggered by student mistakes, generate a sim-
ple intervention, and then terminate.

Several aspects of our data suggest tutoring is goal driven as well as data
driven. As we have described when analyzing task management and com-
plex remedial techniques, we posit that events may not only trigger immedi-
ate tutor responses but may also trigger scripts and microplans or changes
to microplans. These microplans may endure for several exchanges and may
even influence tutorial performance across problems. K goals and policies
that the tutor represents in active memory impart additional continuity
across time in tutoring. Although scripts dictate relatively well-defined se-
quences of activities over severai exchanges, K goals and policies dictate less
specific constraints on the specific actions taken by the tutor but generally
act over longer periods of time. Thus, we believe that tutorial decisions can
be strategic as well as tactical, where a strategic decision is one whose scope
extends across several exchanges or event problems.

Perhaps the most important conclusion we can draw from our analysis is
that the reasoning involved in tutoring is subtle and sophisticated. In the
past, teaching/tutoring has not been regarded as a skillful or knowledge-
intensive profession as, for examplt, physics (Berliner, 1986). We believe
this illusion has persisted largely because the expertise good teachers pos-
sess has not been systematically formalized. Our preliminary results have
begun to expose several dimensions in which teachers and tutors can be re-
garded as skilled practitioners.

First, judging from the table in Appendix B, competent tutors possess
extensive knowledge bases of techniques for defining and introducing tasks
and remediating misconceptions. Viewing a tutor as an expert system, the
number of pedagogical rules our tutors possess may approach that of ex-
pert systems that capture human expertise in fields such as medical diagno-
sis (Shortliffe, 1976) and computer configuration design (McDermott,
1982). Admittedly, those systems may not account for the full range of hu-
man skills in their respective domains; however, our list of tutoring tech-
niques is no doubt equally limited.

Second, we have seen that tutors are capable of taking a variety of dif-
ferent events and conditions into account when selecting from their diverse
array of techniques. Continuing to view tutoring techniques as expert-
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system rules in the tutor's knowledge base, we can say that the antecedent
conditions of those "if-then" rules are often nontrivial.' Rather than asso-
ciating some relatively simple event with a fixed response, factors such as K
goals for the student, inferences about the student's knowledge, overall ped-
agogical policy, and local history of events appear to modulate the selection
of techniques in ways we have only begun to clarify.

Finally, perhaps the most important dimension of expertise we have ob-
served in tutoring involves planning. Not only do tutors appear to formu-
late and execute microplans, but also their execution of a given plan may be
modified and pieces deleted or added, depending on changing events and
conditions. These activities are instances of an ability to dynamically replan
in response to changing circumstances (B. Hayes-Roth, 1:84; B. Hayes-
Roth & F. Hayes-Roth, 1979). Overall, the kinds of planning in skilled tu-
toring appear to be as complex as in many cognitive domains that have
been subjected to detailed analysis (e.g., Larkin, McDermott, Simon, & Si-
mon, 1980). Indeed, because tutors plan in an uncertain environment with
several agents (i.e., the student as well as the tutor), dynamic planning in
tutoring may be inherently more demanding than in many domains of per-
fect information. Thus, in accord with Ohlsson (1986), we see teaching and
tutoring as true problem-solving activities.

Comparison With Other Models of Tutoring and Teaching

Our findings both support and contradict previous research. Like Putnam
(1987), we find that a diagnostic/remedial approach to tutoring cannot ac-
count for many of our observations. Although it is clear that tutors do
make general inferences about a student's level of skill, we found almost no
evidence that sped tic misconceptions or bugs were diagnosed. Consistent
with this finding, we also observed that much of the tutor's decision mak-
ing appears, perhaps surprisingly, insensitive to inferences about the under-
lying causes of student errors. For example, the level of coaching or
scaffolding of the tutor was not related in any obvious way to students' er-
rors (see Figure 3).

Although our data unthrscore limitations of the diagnostic/remedial
model of tutoring, we also wish to point out that in such a model diagnosis
has often been too narrowly construed as equivalent to simply detecting er-
rors or bugs in students' knowledge. However, there are other senses in
which students' knowledge can be incomplete. In particular, it is often as
important for tutors to detect "gaps" in knowledge as to find bugs. Still,

'Alternatively, we might say that the conflict resolution algorithm (Langley & Neches,
1981) for tutoring is quite sophisticated. Conflict resolution is the process by which an expert
system chooses among several different rules, each of whose antecedents match current condi-
tions. In tutoring, for example, conflict resolution might decide which remedial rule (tech-
nique) to fire from the repertoire of rules enabled when a student makes an error.

4
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our data indicate that much tutoring is spent in nondiagnostic activities, ei-
ther broadly or narrowly construed.

Contrasted with a diagnostic-remedial model of tutoring, our analysis of
task management purposes suggests a much more "coaching" view (Burton
& Brown, 1982). Tutors appear to spend as much effort structuring the task
of problem solving for the student as they do critiquing students' weak per-
formance. At least our tutors appear to place a premium on setting up
tasks so that they are at the right levelneither too difficult for the student
nor too trivial. This approach in many cases appears actually to minimize
the production of errors, which, according to the diagnostic-remedial view,
would reduce opportunities for important tutoring.

More generally, a simple diagnostic-remedial view of tutoring appears
too one-dimensional to account for much tutoring behavior. It views the di-
agnosis of student errors and their remediation as the primary activities of
tutoring. To the contrary, we see tutoring as comprising many additional
activities, including task management and tutorial planning. Tutors' overall
skill does not appear dominated by diagnostic abilities. Rather, it depends
at least as much on diverse pedagogical expertise, including a repertoire of
tutoring techniques and rules for using them.

As an alternative to a diagnostic-remedial model of tutoring, Putnam
(1987) proposed a "curriculum script" v;ew, which argues that tutors'
choices of actions are largely predetermined by sequence of problem types,
rather than by students' local errors. Putnam acknowledged that tutors deal
with student errors but suggested that their diagnosis is often cursory. In
the curriculum script model, the overall macrostructure of the lesson is de-
termined by the script, whereas only the microstructure is constrained by
the student model and student performance cues.

Like the curriculum script model, our view sees tutoring as a more plan-
ful process than does the diagnostic-remedial model. However, our micro-
plans and scripts differ in several respects from Putnam's (1987; curriculum
scripts. First, the planning that Putnam referred to is relatively rigid com-
pared with our microplans. The plans implied by a curriculum script appear
relatively impervious to changing conditions, whereas microplans are con-
stantly changing in response to new situations. More important, the micro-
plans we describe are closer to the level Putnam referred to as microstruc-
ture. The planning we have discussed occurs largely within a single prob-
lem, not across many problems. Little of our analysis focused on Putnam's
macrostructural level of tutoring, possibly because our tutors were teaching
students in a remedial context and, thus, may not have brought to the les-
son a predefined set of problem types with which to structure the session.

Our view of tutoring may be seen as a midground between a simple diag-
nostic-remedial model and a curriculum script view. We believe tutoring is
both opportunistic (driven by current conditions and events) and also influ-
enced by more enduring decisions such as policies and microplans. More
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generally, we have attempted to provide a model that explains how a com-
petent tutor can interweave data-driven and tactical constraints with plan-
ful strategic ones, to arrive at intelligent tutorial decisions.

Implications for Intelligent Computer Tutors.

Although our findings have led to a tentative model of tutoring, it is still
not specified precisely or completely enough to yield a computer-based tu-
tor embodying the model. Nevertheless, we can draw several implications
for the development of such systems. First, many intelligent tutoring sys-
tems appear to adhere to the diagnostic-remedial view, because most of
their expertise is used for student modeling. Our results suggest that this
approach might not yield the most effective automated tutors or the most
human-like. However, this conclusion must be hedged. Although there is
little evidence that human tutors perform extensive student diagnosis, we
cannot conclude that it is impossible to produce high quality, computer-
based tutors built around diagnosis. Just as computers play excellent
chess using approaches unlike those used by humans, it is conceivable that
computers could tutor well using approaches not exemplified by human
teachers.

Although our results suggest that developers of intelligent tutoring sys-
tems might focus less on perfecting student diagnosis expertise, they also
suggest that more research should be conducted to bolster the pedagogical
expertise of such systems. Very little of the tutorial knowledge we have
discussed can be found in current intelligent computer-based tutors. As
Ohlsson (1986) pointed out, most of their expertise is at a tactical level.
They exhibit little ability to develop strategic tutorial plans. Rather than
calling them tutors, it might be more accurate to call most of them intelli-
gent monitors of practice that use their knowledge of tactics and the stu-
dent to generate detailed feedback for each local student error. Even at a
tactical level, intelligent tutoring systems are limited. Their repertoire of tu-
toring techniques is small compared with those we have catalogued for hu-
man tutors. For example, their remedial responses arc usually limited to a
description of a bug that matches the student's response (if any) and a hint
about the correct approach to the problem. The table in Appendix B shows
a much wider range of human techniques for responding to errors, and even
this list is not complete.

Currently, we are using the results of our analysis of human tutors to en-
rich the pedagogical component of our computer-based algebra tutor. Our
plan is to begin modestly by adding to its repertoire of remedial techniques.
Then we extend the repertoire to other phases of tutoring, including the
task-management and performance assessments. Finally, we begin to im-
pose a strategic organization on the deployment of techniques. A first at-
tempt to impose strategy-level control on our algebra tutor is discussed in
McArthur, et al. (1988).
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Implications for Teacher Training

Finally, as we begin to understand what tutors do, and when and how they
do it, it becomes natural to ask why. It may seem obvious why tutors pro-
vide hints or reasoning supports. But the reasons for choosing particular
techniques under specific conditions are often difficult to understand. In-
terestingly, in our experience, asking the tutors why they choose certain
techniques rarely helps. We speculate that they often have little knowledge
of why they take certain actions. In this regard, their knowledge resembles
that of many expert systems, which can frequently perform well using rules
that associate specific conditions with specific actions. However, they
embed no underlying theory of their subject matter that they could use to
justify their actions (e.g., Clancey, 1983a).

If tutors cannot justify their choice of techniques, should we be con-
cerned with such justifications? We believe so, for several reasons. First, we
think many techniques do have deep justifications in terms of how they
support the cognitive needs of learners. Even though tutors may not know
such justifications, we believe the techniques they use have evolved and
gone through a selection process. Generally, only those that are justified
survive. Second, if we can discern justifications for tutoring techniques, we
may take the first steps toward a normative science of tutoring. Ultimately,
we would like to say not only what actions tutors do take, but also what
actions they should take, under certain circumstances. To do so, we need
some objective standards against which to measure a prospective technique.
It is our belief that the compilation of the techniques that skilled tutors use,
along with a rational reconstruction of justification for those techniques,
holds the potential for defining objective tutoring standards.
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APPENDIX A

The following table interprets some of the symbols coding student responses
in tutoring sessions.

Symbol Interpretation

R Response to a previous request or prompt that is acceptable.
R Response to a previous request or prompt that is not acceptable.
Ro Null response (hesitation) to a previous request or prompt.
R Unclear response to a previous request or prompt.
R? Response to a previous request or prompt is clear but incomplete or incompre-

hensible in the current context.
Rc Response continues or elaborates on previous response to a request or prompt.
Re Response echos a previous tutor utterance.
C Assenting response to previous yes-no query.
C Dissenting response to previous yes-no query.
Q Request the tutor to confirm the acceptability of the student's previous response.

Request the tutor for more information about a previous prompt or request of
the tutor.
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